HMGA2 sustains self-renewal and invasiveness of glioma-initiating cells

نویسندگان

  • Xiaoling Zhong
  • Xuan Liu
  • Yamu Li
  • Man Cheng
  • Wen Wang
  • Kuan Tian
  • Lili Mu
  • Tao Zeng
  • Ying Liu
  • Xiaobing Jiang
  • Luyang Yu
  • Liang Gao
  • Yan Zhou
چکیده

Glioblastoma multiforme (GBM) is the most common type of brain tumors with dismal outcomes. The mesenchymal phenotype is the hallmark of tumor aggressiveness in GBMs. Perivascular smooth muscle cells (pericytes) are essential in homeostasis of normal and glioma tissues. Here we found HMGA2, an architectural transcription factor that promotes mesenchymal phenotypes in a number of solid tumors, is highly expressed in mesenchymal subtype of GBMs and labels both glioma pericytes and glioma-initiating cells (GICs). Accordingly, depletion of HMGA2 in GICs resulted in compromised self-renewal and tumorigenic capability, as well as undermined mesenchymal or pericyte differentiation. We further showed HMGA2 allows expressions of FOXM1 and PLAU to maintain GIC propagation, gliomagenesis and aggressiveness both in vitro and in vivo. Therefore, suppressing HMGA2-mediated GIC self-renewal and invasiveness might be a promising means to treat GBMs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ER stress inducer tunicamycin suppresses the self-renewal of glioma-initiating cell partly through inhibiting Sox2 translation

Glioma-initiating cells possess tumor-initiating potential and are relatively resistant to conventional chemotherapy and irradiation. Therefore, their elimination is an essential factor for the development of efficient therapy. Here, we report that endoplasmic reticulum (ER) stress inducer tunicamycin inhibits glioma-initiating cell self-renewal as determined by neurosphere formation assay. Mor...

متن کامل

let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells

Cancers may arise from rare self-renewing tumor-initiating cells (T-IC). However, how T-IC self renewal, multipotent differentiation, and tumorigenicity are maintained remains obscure. Because miRNAs can regulate cell-fate decisions, we compared miRNA expression in self-renewing and differentiated cells from breast cancer lines and in breast T-IC (BT-IC) and non-BT-IC from 1 degrees breast canc...

متن کامل

Hmga2 Promotes Neural Stem Cell Self-Renewal in Young but Not Old Mice by Reducing p16Ink4a and p19Arf Expression

Stem cells persist throughout life in diverse tissues by undergoing self-renewing divisions. Self-renewal capacity declines with age, partly because of increasing expression of the tumor suppressor p16(Ink4a). We discovered that the Hmga2 transcriptional regulator is highly expressed in fetal neural stem cells but that expression declines with age. This decrease is partly caused by the increasi...

متن کامل

Dev107326 4087..4097

In vertebrate retina, histogenesis occurs over an extended period. To sustain the temporal generation of diverse cell types, retinal progenitor cells (RPCs) must self-renew. However, self-renewal and regulation of RPCs remain poorly understood. Here, we demonstrate that cellextrinsic factors coordinate with the epigenetic regulator high-mobility group AT-hook 2 (Hmga2) to regulate self-renewal ...

متن کامل

Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression.

Cancer-initiating cells comprise a heterogeneous population of undifferentiated cells with the capacity for self-renewal and high proliferative potential. We investigated the role of uPAR and cathepsin B in the maintenance of stem cell nature in glioma-initiating cells (GICs). Simultaneous knockdown of uPAR and cathepsin B significantly reduced the expression of CD133, Nestin, Sox2 and Bmi1 at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016